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ON THE STRUCTURE OF MINIMUM-WEIGHT k-CONNECTED
SPANNING NETWORKS*

DANIEL BIENSTOCKf, ERNEST F. BRICKELLf, AND CLYDE L. MONMA’f

Abstract. The problem offinding a minimum-weight k-connected spanning subgraph ofa complete graph,
assuming that the edge weights satisfy the triangle inequality, is studied. It is shown that the class of minimum-
weight k-edge connected spanning subgraphs can be restricted to those subgraphs which, in addition to the
connectivity requirements, satisfy the following two conditions:

(I) Every vertex has degree k or k + 1;
(II) Removing any l, 2, ..-, or k edges does not leave the resulting connected components all k-edge

connected.
For the k-vertex connected case, the parallel result is obtained with "k-edge" replaced by "k-vertex," with the
added technical restriction that V >= 2k for condition (I) to hold. This generalizes recent work of Monma,
Munson, and Pulleyblank for the case k 2.
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1. Introduction. In the design of communication or transportation networks, it is
frequently important to produce networks of low "cost" which are also "survivable." In
many cases the cost arises, to a good degree ofapproximation, in the form ofedge weights
that satisfy the "triangle inequality" (defined in precise form below). The overall cost,
or weight, or a network is the sum of the individual edge weights. For survivability
reasons, the network must satisfy certain connectivity requirements (see [CW], [GM],
[MS], [SWK] for more motivation). A typical survivability requirement is that the
removal of any (k or fewer edges (or vertices) leaves the remaining network con-
nected. The following standard definitions are required to make the above statements
precise.

A graph or network G (V, E) is called k-edge connected if the removal of any
(k or fewer edges leaves G connected. If, in addition, the removal of any (k
or fewer vertices leaves the remaining vertices of G connected, then G is called k-vertex
connected. We note that the degenerate graph consisting of a single vertex is k-edge and
k-vertex connected for all values of k. A variation of Menger’s Theorem states that a
nondegenerate graph G is k-edge (respectively, k-vertex) connected if and only if there
are k edge (respectively, vertex) disjoint paths between every pair of vertices in G.

Hence we obtain the following problem, k-connected network design with triangle
inequality: given a complete graph with edge weights that satisfy the triangle inequality,
and an integer k, find a minimum-weight k-edge (or k-vertex) connected spanning
subgraph. We remark that for any k >_- 2 this problem is NP-Hard, as the Hamiltonian
Cycle problem can be reduced to a 2-connected network design problem with triangle
inequality. Further, in general there will be a difference between the "edge-connected"
and "vertex-connected" versions of this problem.

In the following, the word "spanning" will be omitted, for convenience. A solution
will be a k-connected subgraph. An optimal subgraph or solution will be a solution of
least total weight.

This paper presents some strong structural properties that optimal subgraphs can
be assumed to satisfy. In particular, our results show that there are optimal subgraphs
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that are essentially edge-minimal (least number of edges) from among all k-connected
subgraphs, without regard to weight (the number ofedges will be within a small constant
factor from being best possible). In order to describe the results in detail, we need some
terminology and background.

We let V denote a set of vertices. A nonnegative symmetric weightfunction d(.,
is defined on all pairs of vertices so that the triangle inequality holds, i.e., d(u, v) >= 0,
d(u, u) O, d(u, v) d(v, u), and d(u, v) + d(v, w) <= d(u, w) for all u, v, and
win V.

Given a connected graph G (V, E), the canonical weight function defined by
G (V, E), is given by d( u, v) minimum number of edges in a shortest path from u
to v in G for all u and v in V. It is clear that this choice of weights satisfies the triangle
inequality.

A recent paper MMP studies this network design problem in the particular case
where k 2. They show that for k 2 the class ofminimum-weight k-edge (respectively,
k-vertex) connected subgraphs can be restricted to the class of k-edge (respectively, k-
vertex) connected subgraphs G (V, E) satisfying the following conditions:

(I) Every vertex of G has degree k or k + 1;
(II) Removing any 1, 2, ..., or k edges in G does not leave all the resultant con-

nected components all k-edge (respectively, k-vertex) connected.
They also show that any solution G (V, E) satisfying (I) and (II) for k 2, is the
unique optimal subgraph for the canonical weight function defined by G. They conjecture
that these results would extend to any k > 2.

We note that for k 2, conditions (I) and (II) ensure that the graph will be two-
vertex connected. Hence, the cases for two-edge and two-vertex connectivity are in fact
just one case. For k >= 3, a minimum-weight k-edge connected subgraph can have a value
strictly less than a minimum-weight k-vertex connected subgraph. For example, con-
sider the 3-edge connected graph G in Fig. with the canonical weight function de-
fined by G.

In 2, we consider the k-edge connected problem and show that some optimal
solution satisfies conditions (I) and (II). We also show that conditions (I) and (II) do
not characterize the class of minimum-weight k-edge connected subgraphs for k >= 3,
contrary to the case for k 2.
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In 3, we consider the k-vertex connected case and show that some minimum-
weight solution satisfies condition (II), and that it also satisfies condition (I) when
VI >= 2k. This restriction is tight, since for every k >= 4, we provide a k-vertex con-

nected graph G (V, E) with VI 2k 1, and maximum vertex degree of (2k- 2),
which is the unique optimal solution for the canonical weight function defined on G.

Our structural results are ofuse towards obtaining heuristics. In particular, the proof
of the degree condition (I) yields a polynomial-time algorithm that, given a solution,
will produce a new one that satisfies (I) without increasing cost. This is useful, as in
practice it is very desirable to produce networks with vertices of small degree, and in a
k-connected graph every vertex has degree at least k. Another way of restating these facts
is the following: condition (I) shows that (except for small cases in the vertex-connected
case) there are optimal solutions whose total number of edges is within a factor of +
/k of the least possible number of edges in any k-connected subgraph, independent of

edge-weights. We remark that the structural properties derived in MMP for k 2 have
been used to obtain heuristics for producing low-cost networks for "real-world" problems
in [MS].

In 4, we present a polynomial-time heuristic that for each fixed k >= 2 produces a
solution at most a constant factor (depending on k) larger than the optimal value.

2. Case of edge-connectivity. In this section, we show that some optimal k-edge
connected subgraph satisfies conditions (I) and (II). We also show that these conditions
do not characterize the class of minimum-weight k-edge connected subgraphs for k >= 3,
contrary to the case for k 2. The following definitions are due to Mader [Ma]. Let
G (V, E) be a graph, with xi V for 0 =< _-< 2, and with x and x2 adjacent to x0. Then
the graph G’ obtained from G by deleting (x0, xj) j 1, 2, and adding (x, x2) is called
a lifting at Xo of G. If the edge-connectedness of G’, between any two vertices of
G’ Xo, is not smaller than that of G, then the lifting is called admissible.

THEOREM 1. For any set ofvertices V with nonnegative symmetric weightfunction
d( ., satisfying the triangle inequality, and any k >= 2, there exists a minimum-weight
k-edge connected subgraph G V, E) satisfying conditions I and (II).

Proof of (I). Mader [Ma] proved the following results for a graph H (V, E)
with w V:

If the degree of w is at least 4, and w is not cutvertex, then H has an admissible
lifting at w.

(2) If w is a cutvertex, but no single edge incident to w is a cutset, then H has an
admissible lifting at w. Hence, suppose that x is a vertex of G with degree at least k + 2.
Since k >- 2, if x is not a cutvertex, then by G has an admissible lifting. If x is a
cutvertex, then there are at least k ->_ 2 edges connecting x to each connected component
of G x, and all edges incident to x are accounted for in this way. Hence, no such edge
can be a cutset of G, and (2) applies. Thus, let G’ be an admissible lifting at x.

Now G’ is k-edge connected between any two vertices y and z of G’ x. Since, in
G’, the degree ofx is at least k, we conclude that G’ itself is k-edge connected. Further,
by the triangle inequality, the weight of G’ is no greater than that of G. Consequently,
after repeating the above lifting procedure a finite number of times, we will obtain a
minimum-weight k-edge connected graph with all degrees equal to k or k + 1.

Proof of(II). Let G (V, E) be a minimum-weight k-edge connected subgraph,
where G has the minimum number of edges among all minimum-weight solutions. We
suppose, in order to obtain a contradiction, that (II) does not hold; that is, removing 1,
2, ..., or k edges leaves the resultant connected components k-edge connected.
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Since G is k-edge connected, removing fewer than k edges from G leaves the resultant
graph connected; ifthis resultant graph is still k-edge connected then we get a contradiction
to the minimality ofG. The same contradiction occurs ifremoving k edges from G leaves
the graph connected. So, assume that the removal ofthe k edges ui, wi) <= <= k results
in two k-edge connected components on vertex sets U and W, with ui in U, and wi in
W for =< -< k. Let x; be a neighbor of u in U, and y; be a neighbor of w in W. The
vertices ui and xi for =< -< k need not be distinct, and the vertices wi and Y for =<
=< k need not be distinct. However, at least one of U, W must be nondegenerate, and

consequently it must contain at least k + vertices. Suppose W is nondegenerate. Then
we may assume that w w2, Wl q: y, and w2 :/: Y2, and that Yi, 1, 2, is not an
endpoint of any of the deleted edges.

By the triangle inequality, d(x, u) + d(u, w) + d(Wl, Yl) >= d(x, y) and
d(x2, u2) + d(u2, w2) + d( w2, y2) >= d(x2, y2). Without loss of generality, d(u2, w2) >=
d(u, w), and thus replacing edges (x, u), (w, y), and (u2, w2) by edge (x,
does not increase the cost of the graph, but decreases the number of edges. To obtain
the desired contradiction, it remains to be shown that the resulting graph is k-edge con-
nected.

Consider two distinct vertices s and in U. Since the subgraph of G induced by U
is assumed to be k-edge connected, there were k edge-disjoint paths between s and
before the transformation cited above was performed. If none of these paths use the
deleted edge (x, u ), then these same paths suffice. If one path uses the edge (x, u ),
replace (x, u) in that path by the added edge (Xl, y ), a path from y to Wl in W, and
the edge (Wl, u to obtain k edge-disjoint paths in the transformed graph. A similar
argument holds if both s and are in W. Finally, suppose that s is in U and is in IV.
Since the subgraph of G induced by U is k-edge connected even after removing the edge
(x, u), there must be k edge-disjoint paths from s to Ul, Xl, U3, U4, Uk in U.
Similarly, there are k edge-disjoint paths from to Wl, y, w3, w4, Wk in IV even
after removing the edge (w, y ). Together with the added edge (Xl, y ), and existing
edges (u, w ), (u3, w3), (Uk, Wg), these paths provide k edge-disjoint paths from s
to t. Hence, the transformed graph is a minimum-weight k-edge connected graph with
fewer edges than G’, a contradiction.

We note that the graph G in Fig. is 3-edge connected and satisfies conditions (I)
and (II). Now, G is not the unique minimum-weight solution for any set of weights
satisfying the triangle inequality. This follows since we may assume, without loss of
generality, that d( 1, 3) >- d( 3, 4) by symmetry and that d( 3, 4) + d(4, 6) >= d( 3, 6) by
the triangle inequality. Hence, removing the edges 1, 3 and (4, 6 and adding the edge
(3, 6) leaves the graph 3-edge connected but does not increase the cost. Therefore, con-
ditions (I) and (II) do not characterize the class of minimum-weight solutions for k 3
as they do in the case k 2.

3. Case of vertex connectivity. In this section, we analyze the design problem in
the vertex-connectivity case. This section will be divided into two parts. In the first part,
we give a structural theorem that is an analogue of Theorem 1. This theorem uses a
technical theorem, which is proved in the second part.

3.1. The structural theorem. We will prove the following result below.
THEOREM 2. For any set ofvertices F" with nonnegative symmetric weightfunction

d(., satisfying the triangle inequality, and any k >- 2, there exists a minimum-weight
k-vertex connected subgraph satisfying II ), and also satisfying I if F >= 2k.
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Before proving this theorem, let us review the implications of its statement. At first
glance, the additional boundary condition imposed in (I) might seem odd. We note,
however, that this requirement is needed (and tight) since for any k >= 4, there is a graph
which is the unique minimum-weight k-vertex connected solution for the canonical weight
function defined by G. We demonstrate this fact next. Consider a complete bipartite
graph with vertex set V t.) V2 where gl g2l k 1. Add a vertex x that is adjacent
to every other vertex. Call this graph G (V, E). G is k-vertex connected with VI
2k and the degree of x equal to (2k 2). To see that G is the unique minimum-
weight solution for the canonical weight function on G, note that all edges in G have
weight one and all edges not in G have weight two. Now, G has (k2- edges and
any k-vertex connected graph has at least (2k2 k/2) edges. Therefore, at most p _-<
(k 2)/2 edges of weight one can be removed from G and at mostp2 edges of weight
two can be added to G to obtain another minimum-weight k-vertex connected solution.
Since all the vertices other than x have degree equal to k, the removed edges must all be
adjacent to vertex x; if not, then some vertex in the resultant graph will have degree less
than k. Since V U V2 form a complete bipartite graph, the edges of weight two added
to G must be entirely contained in V1 or V2. Therefore, the new graph is not k-vertex
connected if any p >_- edges of weight one are removed. Therefore, G is the unique
minimum-weight k-vertex connected solution, as desired.

Informally, we can explain why the additional condition in (I) arises, as follows. In
order to prove condition (I) for the vertex connected case, it would be useful to have
available a result on liftings similar to the theorem of Mader, used in 2 for the edge-
connectivity case, but instead for vertex connectivity. We would only need to show that
if G is k-vertex connected for k >_- 2 and x a vertex of G with d(x) >_- k + 2, then there
is a lifting at x that is k-vertex connected. However, this result is not true. Consider the
graph consisting of k + 2 copies, D1, Dk+ 2, of the complete graph on k vertices,
together with k additional vertices Xl, x. Add k(k + 2) edges so that there is a
perfect matching between x, x and each ofD1, D/ 2, i.e., each x is adjacent
to exactly one vertex in each D and each vertex y e D is adjacent to exactly one of
Xl, ---, x. Then for any lifting at Xl, the vertices x, ..., x form a cut set.

The next technical theorem is the result we need for proving the revised condition
(I). Essentially, it shows that we can always find either a single lifting, or a pair of liftings
that will keep the graph k-vertex connected.

THEOREM 3. Let G V, E) be a minimal k-vertex connected graph with gl >--
2k and k >- 2. Ifx V has degree at least k + 2 then either:

there exists a lifting ofx that is k-vertex connected, or
(ii) there exists a vertex y V such thatfor any lifting G’ at x, there exists a lifting

at y ofG’ that is k-vertex connected.
The requirement on the number of vertices arises naturally in the proof ofTheorem

3, which shall be given in 3.2.
Now we pass to the proof of Theorem 2.
Proof of (I). As in the proof of Theorem 1, this follows easily from Theorem 3

since, by the triangle inequality, the weight of G does not increase as a result of a
lifting, ff]

Proofof II ). Let G (V, E) be a minimum-weight k-vertex connected subgraph
V, where G has the minimum number of edges among all minimum-weight solutions.
We suppose, in order to obtain a contradiction, that (II) does not hold. That is, removing
1, 2, ..., or k edges leaves the resultant connected components k-vertex connected.

Since G is k-vertex connected, removing fewer than k edges from G leaves the
resultant graph connected; if this resultant graph is still k-vertex connected then we get
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a contradiction to the minimality of G. The same contradiction occurs if removing k
edges leaves the graph connected. So we assume that the removal of the k edges (ui, wi)

=< =< k results in two k-vertex connected components on vertex set U and Wwith
in U and wi in W for -< =< k. We claim that either UI 1, W[ or all of the ui
and wi are distinct. This follows since if uI > 1, WI > and u u2, then uI >=
k + and W[ >- k + since the subgraphs of G induced by U and IT’, respectively, are
k-vertex connected, and so u, w3, w4, wk } is a (k )-vertex separator of G.

Consider the case where UI 1; the proof for Wl is similar. Let u be the
single vertex in U which is the endpoint of all of the k removed edges. Since G has no
parallel edges, each wi is distinct for -< =< k. Also, since the subgraph of G induced
by W is k-vertex connected, [W[

_
k + 1. Let Yi be a neighbor of W in W. The yi’s

need not be distinct. The triangle inequality implies that d(u, wi)+ d(wi, Yi)
d(u, Yi) for =< =< k. So, without loss of generality, we may replace edges (w, y)
and (u, w2) by the edge (u, Yl without increasing the cost of the graph. We claim that
the resultant graph is still k-vertex connected, which would provide the desired contra-
diction. Consider u in U and any in W. Since the subgraph of G induced by W is k-
vertex connected, there are k vertex-disjoint paths from to vertices w, y, w3, w4,

wk even excluding the removed edge (Wl, yl ). Continuing these paths with the added
edge (u, y) and existing edges (u, w), (u, w3), (u, w4), (u, w) yields the desired
result.

Now, consider the case where [UI >- k + 1, wI >-- k / and the vertices U and
wi are all distinct for =< =< k. Let xi be a neighbor of ui in U, and let Y be a neighbor
of wi in W. The xi’s need not be distinct, and the yi’s need not be distinct. By the triangle
inequality, d(xi, ui) + d(ui, wi) + d(wi, Yi) d(xi, Yi) for =< =< k. So, without loss
of generality, replacing edges (Xl, Ul), (w, Yl) and (u2, w2) by the edge (x, Yl) does
not increase the total cost. We need only show that the resultant graph is k-vertex con-
nected to obtain the desired contradiction.

First, consider distinct vertices s and both in U; the case where both s and are
in W is similar. Since the subgraph of G induced by U is k-vertex connected, there were
k vertex-disjoint paths from s to in U. If none of these paths used the deleted edge
(x, Ul) then we are done. If one path used this edge then replace the removed edge
(x, u by the added edge (Xl, yl ), a path in Wfrom y to w, and the edge (Ul, Wl to
complete the path.

Finally, consider a vertex s in U, and a vertex in W. Since the subgraph of G
induced by U is k-vertex connected, there exists k vertex-disjoint paths from s to u, Xl,

u3, Uk not using edge (x, u ). Similarly, there are k vertex-disjoint paths from to
Wl, y, w3, "", Wk not using edge (Yl, Wl ). Combining these paths with the added edge
(x, y) and existing edges (u, w), (u3, w3), (Uk, Wg) yields the desired result.
Hence, the resultant graph is a minimum-weight k-vertex connected subgraph with fewer
edges than G, a contradiction.

3.2. Proof of Theorem 3. Below we will prove the theorem on liftings which was
used in the proof of Theorem 2. First we need some auxiliary definitions and results.

For a graph G (F, E) and a set of vertices W_ F, let a(W) be the set of vertices
contained in F\W that is adjacent to at least one vertex in W. It is not hard to prove
for W, U

_
F, that the following submodular inequality holds:

I(W u)l + I(W U)l I(W)l + I(U)l.

Below we will require the following slightly stronger result that involves two graphs defined
on the same vertex set.
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PROPOSITION 1. Let G V, E) and G’ V, E’) be graphs. Let W, U
_

V. Suppose
that 6(W fq U)

_
6,(W fq U) and 6,(W t3 U)

_
i(W t3 U). Then:

(i) Idi(Wf)U)I + Ii,(W tO U)I--< Idi(W)l + li,(U)l,and
(ii) if, in addition, G and G’ are k-vertex connected and Ii(W) di6,( U)

k, W U 4 , and WtAUI <- VI k then I/(wtAu)l
l,(w u)l

Proof. Since X[ + Y X tO Y + X Y I, we can prove (i) by proving that
6(W fq U) fq i,(W to U)

_
i(W) f3 i,(U), and 6(W f3 U) LI di,(W to U)

di6(W) t3 66,(U). To prove the first condition suppose y e 66(W N U) f) di,(W t3 U).
Then y W tO U and is in di(W fq U). So y is adjacent in G to a vertex in W fq U.
Thus y e 6(W). Also di6(W fq U)

_
di,(W f’) U) so y 6,(U). The proof of the latter

condition is similar.
To prove (ii), observe that either W f) U[ V[ k or 6(Wfq U) is a outset in

G. So di(W fq U)[ >- k. Also, either di6,(W tO U) V\(W tO U) or di6,(W tO U) is a
cutset in G’. So i,(W tO U)[ >= k. So (ii) follows from (i).

We will say that a set W
___
V is a (k, T, x) separator in G if 4: T

___
W, x

6(W) and 16(W) k.
PROPOSITION 2. Let G be a k-vertex connected graph. Let x Vand T

_
V. Ifthere

exists a ( k, T, x) separator in G, then there exists a unique maximal k, T, x) separator
in G.

Proof. If Wand W’ are both (k, T, x) separators then T
_
W fq W’ and x

W’to di(W) tO/t(W’). So by Proposition 1, Wt_J W’ is a (k, T, x)-separator. Thus W
{Z IZ is a (k, T, x)-separator } is a maximal (k, T, x)-separator, l--1

Next we prove Theorem 3, which we restate here.
THEOREM 3. Let G V, E) be a minimal k-vertex connected graph with Vl

2k and k >= 2. Ifx V has degree at least k + 2 then either:
there exists a lifting ofx that is k-vertex connected, or

(ii) there exists a vertex y V such thatfor any lifting G’ at x, there exists a lifting
at y ofG’ that is k-vertex connected.

Proof. Let x e V have degree at least k + 2. Suppose there is no lifting at x that is
k-vertex connected. We will show that condition (ii) holds.

Let d be the degree ofx and let x, ..., Xd be the neighbors of x. For each pair of
neighbors xi and xj of x, let G be the lifting at x with respect to vertices x; and x. By
assumption, G0 is not k-vertex connected. Let S be a cutset in G with SI --< k 1. Let
Wbe a connected component ofthe graph Go\S. Since S is not a cutset in G, Wcontains
at least one ofthe vertices x, xi or xj. So Go\S contains exactly two connected components
Wand U. Without loss of generality, x e U, x, xj } W tO S, and xi W. Since x has
at least k neighbors in G0, UI >= 2. S t_J { x } is a cutset in G, so SI k 1. If there
exists a (k 1, x, x) separator in Go, let W0 be a maximal (k 1, xi, x) separator in
G0. If there is no (k 1, x, x) separator in G0, then define W0 . Note that ifx
W0, then Wo Wji. Let So di0(W/j). Let Uo V\(Wo tO Si).

Similarly, for each neighbor xi of x, let Gi be the graph G with the edge (x, x)
deleted. Since G is minimal k-vertex connected, Gi is not k-vertex connected, but it is
(k vertex connected, and there exists a (k 1, x, x) separator in G. Let W be the
maximal (k 1, xi, x) separator in Gi. Let Si 6(W,.) and let Ug V\(Wi tO Si).

The remainder of the proof will be broken into several steps.
Step 3.1. For any two neighbors xi and xj of x, W,. fq IV:. . If W0. 4: then

W W0. and if, in addition, x: g W0, then W,. W0.
Proof. The only edge that G; contains that is not an edge of Gj is (x, xj), and the

only edge that G: contains that might not be an edge of Gi is the edge (x, xi). Thus, it is
easy to verify that di(W,, fq Wj.)

_
6(W,- f) Wj.), and 6(W,. tO W)

_
,(W,. tO W).
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Now x and all neighbors of x except for xi and xj are not in Wi tO W. So
[Wi tO W[ _-< IV[ (k + ). If Wi N W 4: , then by Proposition l, 6G(W f) W)[
k 1. But xi Wi f) W, so 6G(Wi f) W) 6G(W,’f W). This contradicts the fact that
G is k-vertex connected and establishes the first condition.

Similarly, it is also easy to verify that if VV04 then 6G(W W0)_
8Gj(W/fq W/j), tSGj(W,. LJ Wo)

_
diG,(Wi to Wo), and [IV,. to Wo[ -< IV[ (k + ). Also,

r) wo since xi e Wi fq wo. So by Proposition 1, tSG:(Wi LJ Wo) k 1. By
the maximality of W0, W

_
W0.. Ifx W, then W is a (k 1, x, x) separator in G.

By the maximality of W/, Wo

_
W,., which establishes the second condition. E]

Step 3.2. If Wo
Proof. If W0

G(Wi) and ,(W)l k ,(W) imply that diG,(W,.) tSG(W/). Consequently,
since xj e diG(W/), we have x diG(W/).

If Wo
with all vertices of the path except xi contained in W. Since x g W,., there must be a
vertex on this path contained in Si. E]

In reading the following, it will be helpful to consider the diagram in Fig. 2. This is
a partition of the vertices of G into nine disjoint sets. Two of the sets in Fig. 2 are said
to be adjacent if their boundaries in Fig. 2 share a point or a line segment in the diagram.
(Note that a set is adjacent to itself.) Then two vertices in G can be adjacent only if the
two sets that contain them are adjacent in Fig. 2. E]

Step 3.3. If Wo
(Si n ) u

Proof. Clearly, xi e Wo fq W, and x together with at least (k neighbors of x
are not in Wo U W/. Hence by Proposition 1, diG(Wo n w/)l k I/G(w0 u w/)l.

Now x tSG(Wo. Iq Wi) but x iG(Wo n wi). So wo n w/is a (k 1, xi, x)
separator in G. By Step 3.1 and the maximality of W,., W,. Wo n w.

Let T (So n si) u so n ui) u s n Uo), and let T’ (So n s) u (so. n w) u
(si ffl Wo). Now, Zl 4- T’I Sl 4- ISl. Also, iG(W/j f’) Wi)_ (x} U Z’ and
/iG(Wou W)_ {x} U T. So ITI IT’I k- 1, anddiG(Won W/)= {x} U T’.
Hence, Si (So n s) u (so n w,.) u (s n w0).

Step 3.4. If w. Iq S then Si S So.
Proof. From Steps 3.2 and 3.1, and since Sl k 1, we see that there is another

neighbor x of x such that W fq Si . By Step 3.2, we get xj e W0. But x W0 n

Sil

W,VV

UrWq

W,rUq

FIG. 2
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W/by Step 3.3, and xj a Wo S. Since xj

w ui.
Let R (So f"l S) U Si Ui) S fq Wij), and let R’ Si S) U S Uo) U

(Sijf"l Wi). Now IRI + IR’I- ISjl + ISgl. Also, G(Wgj U)_ {x}UR, and
5(W. U.)_ {x} U R’. Hence, IRI IR’I k- 1. So W,yf Ugisa (k- 1, xj, x)
separator in Gj. Since Wj

_
Wi, Wj fq Wi: fq W/= and W W0. f3 Si , we have_

W0. U;. By the maximality of Wj, we get W W/: fq Ui and Sj R. Similarly,
W Uo. and S R’. Thus, S: fq S Si S fq S. We also get that Wa f"l S,

for { a, b } { i, j, k}. So from Si f’l Sj Si f3 Sj S, we get Si Wj . Sim-
ilarly, So. W/e . Thus, Si Sij 1 Si. So [S] Si[ k and Sj S, Si
Si-- Sij.

Step 3.5. W, Wji if and only if xj Si.
Proof. Suppose I/V,7 Wji. Let c be a vertex such that W fq S; . By Steps 3.3

and 3.4, we have S (S Wi) U (Si fq Si) U (S IV,.) Si. So Si fq Wi
Si fq Uij. Thus, b(Wi fq Uj) (Sij S) U {x}, and S Sil >- k . So S S
Si Si Si and x q Si.

Suppose x Si. Let X be the set of neighbors of x such that W Si for each
x X. So Si S for each x X. Now if W fq S , then S S Si and Wo. Wji
by Step 3.2. Hence we may assume that W fq S d: for each x X. There exist dis-
joint paths from x to the vertices in Sj with each path contained in Wj U Sj. For each
x X and for each vertex y in W S, the path from x to y must contain a vertex
of S Si. So S 1" Wjl X[. But for each neighbor xg q X, S f’l Wg[ >- X[. So
Si[ >-- d(x)- 1. I--3

Step 3.6. Let Xio be a neighbor of x. Let x, ..., xt be the neighbors of x that are
not in Sio. Then V { x } U S; tA ti= W,..

Proof. Let G’ be the graph G induced on V\Sio with edges (x, xi) deleted for
=< =< t. By Step 3.5, x is an isolated vertex in G’. So if y V but y { x } U Sio U
U= Wi, then S separates y from x in G.

Step 3.7. Let x be a neighbor of x. Then Si contains no neighbors of x.
Proof. Suppose xj Si. Let xi, xi, be the neighbors of x that are not in Si.

Let x,..-, x., be the neighbors ofx that are not in S. Then V { x } U Si tA ti=W--
{x) u u=,

By Step 3.5, { xj,,... xj, } { xi,,"" xi, . So V { x } I,.J S I,..J Sj. Hence
IVI-_< 2k- .

We are now ready to complete the proof of Theorem 3. By Steps 3.5 and 3.7, we
have Si S for any two neighbors xi, and x of x. So let S Si, and let y S.

Let Y be a vertex W/that is adjacent to y. Given two neighbors, x and x_ of x, let
G’ be the lifting at y of G2 that is obtained by deleting edges (y, y) and (y, Y3) and
adding edge (Y2, Y3). We can now finish the proof of Theorem 3.1.

Step 3.8. G’ is k-connected.
Proof. Since G is k-vertex connected, we need only show that there are k vertex

disjoint paths in G’ between each of the pairs (x, x), (x, x2), (y, y), and (y, Y3). In
the remainder of the proof, we will say that a path P is contained in a vertex set Y

_
V

if all vertices of P except for the endpoints are in Y. We will say that a set of paths
P, Pt are paths from u to u, ut if path Pi is a path from u to ui. Let z,
z_ be the vertices in S with y z.

For (x, x) let P, P_ be vertex disjoint paths in G’ contained in W from

x to z,..., z_. Extend P along a path in W,.+3 to x. Let P be a path x to

x extended along a path to Y2 contained in W2, then to Y3 and then along a path in

W3 to x.
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For (x, x2) let PI, Pk be vertex disjoint paths in G from x2 to
ya. If one of these paths contains the vertex x, call that path P. P cannot be the path
from x2 to y2. All paths except P are paths in G’. Extend P in G’ to Y3 and then along
a path in W3 to x. For Pi 4: P, extend Pi along a path in Wi / 3 to x. If zj is an endpoint
of P, then truncate P at x2 and extend it in G’ to x and then to z. in W1 and then along
a path in Wj-+ 3 to x.

For (y, y2), let PI, P be vertex disjoint paths in G contained in W2 from Y2
to zl, Zk-1, X. All paths except PI are paths in G’. Replace PI with a path in G’
starting at Y2, going to Y3, then to x along a path in W3, and then to y along a path in
W4. For 2 -< -<- k- 1, extend Pi to Yi / along a path in W,. / and then to y. Extend
Pg to x, and then to y along a path in W.

For (y, Y3) let P, P be vertex disjoint paths in G contained in W3 from Y3 to
zl, , zk_ 1, x. All paths except P are paths in G’. Replace PI with a path in G’ starting
at Y3, going to Y2, then to x2 along a path in W2, then to Xl, and then to y along a path
in W. For 2 =< =< k 1, extend Pi to y along a path in Wi / 2.

This completes the proof of Theorem 3.

4. Concluding remarks. We have derived conditions on the class of minimum-
weight k-edge (or k-vertex) connected networks, where the distances between the points
satisfy the triangle inequality. This generalizes recent results [MMP] for the case k 2.
We also showed that these conditions do not characterize the optimal solutions for k >-
3, contrary to the case k 2. We leave as an open question the problem of determining
additional properties which characterize these classes.

For completeness, we mention that for each fixed k >= 2, there is a polynomial-time
algorithm that produces a solution of cost at most a constant factor (depending on k) of
the optimum. This is obtained as follows: start with a Hamiltonian cycle C produced by
the Christofides heuristic. It is well known that the value of C is at most -32 that of an
optimal 2-connected spanning subgraph [FJ]. Next, let Ck denote the graph obtained
from Cby adding an edge to join any two vertices that are within distance k in C (distance
in the graph-theoretic sense). It is not difficult to see that Cg is 2k-connected, and that
its value is at most 3k(k + /4 times that ofan optimal 2-connected spanning subgraph.
Since the cost of any k-connected spanning subgraph is at least that of an optimal 2-
connected spanning subgraph, we obtain the desired result.
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